原子核中的α团簇对核反应与相对论 重离子碰撞的影响

马余刚 (复旦大学核科学与技术系/现代物理研究所国家自然科学基金委理论物理专款-上海核物理理论研究中心 上海 200433)

摘要 团簇结构可以稳定存在于原子核的内部。研究原子核的α团簇结构及其影响在核物理与天体物理中是 一个十分重要的课题。在过去几十年里,原子核的团簇结构效应在重离子核反应中有了较多的研究。本文主 要总结了在核反应与相对论重离子碰撞中对原子核的团簇结构效应的研究。例如,通过原子核的巨共振来研 究原子核的团簇结构。通过核反应中的粒子(包括中子、质子以及光子)的发射与关联、集体流等研究原子核的 团簇结构。进一步,我们把原子核的团簇效应延伸推广到相对论重离子碰撞中,比如,对集体流及其涨落、HBT (Hanbury Brown and Twiss)关联、多重性关联、双强子方位角关联、电磁场等的研究。 关键词 原子核内α团簇,巨共振,核子-核子关联,集体流,双强子关联 中图分类号 O41,O56 DOI: 10.11889/j.0253-3219.2023.hjs.46.080001

Effects of a-clustering structure on nuclear reaction and relativistic heavy-ion collisions

MA Yugang

(Department of Nuclear Science and Technology/Institute of Modern Physics, Fudan University, Shanghai Research Center for Theoretical Nuclear Physics, NSFC, Shanghai 200433, China)

Abstract Cluster structures can be stable in the interior of atomic nuclei. The study of α -cluster structure of atomic nuclei and its effects are important topics in nuclear physics as well as astrophysics. In the past few decades, cluster structure effects in atomic nuclei have been much studied for heavy-ion nuclear reactions. This paper summarizes the authors' studies on the α -cluster structure effects on nuclei in nuclear reactions and relativistic heavy-ion collisions. For example, the cluster structure of atomic nuclei has been studied through giant resonances of atomic nuclei. The cluster structure of the nucleus is studied through the emission and correlation of particles (including neutrons, protons, and photons) in nuclear reactions and through collective flows. We extend the cluster effect of atomic nuclei to relativistic heavy-ion collisions, e.g., to the study of collective flows and their rise and fall, the HBT (Hanbury Brown and Twiss) correlation, multiplicity correlations, the dihadron azimuthal correlation, and electromagnetic fields.

Key words a cluster in atomic nucleus, Giant dipole resonance, Nucleon-nucleon correlation, Collective flow,

收稿日期: 2023-06-04, 修回日期: 2023-06-16

国家自然科学基金委重大项目(No.11890710, No.11890714)、基金委理论物理专款-上海核物理理论研究中心(No.12147101)和广东省基础与应用基础研究重大项目(No.2020B0301030008)资助

第一作者: 马余刚, 男, 1968年出生, 1994年于中国科学院上海原子核研究所获博士学位, 2017年当选中国科学院院士, 研究领域为核物理

Supported by Major Program of the National Natural Science Foundation of China (No. 11890710, No. 11890714), Shanghai Research Center for Theoretical Nuclear Physics, NSFC (No.12147101), the Guangdong Major Project of Basic and Applied Basic Research (No.2020B0301030008) First author: MA Yugang, male, born in 1968, graduated from Shanghai Institute of Nuclear Research, Chinese Academy of Sciences with a doctoral degree in 1994, elected as an academician of Chinese Academy of Sciences in 2017, focusing on nuclear physics Received date: 2023-06-04, revised date: 2023-06-16

Dihadron correlation

我们知道 α 核是由 2 个质子和 2 个中子所组成 的,因其结合能很大,在原子核中是最稳定的。对于 像 ${}^{12}C \pi_{s}{}^{16}O$ 这样的原子核,它们内部可能存在着以 α 为基本单元的存在形式。例如, ${}^{12}C$ 有可能是三个 α 组成一个体系, ${}^{16}O$ 有可能是4个 α 核组成的体系。 这种团簇的结构在这类 α 共轭核是很有可能的。从 结合能角度来说,同位素的结合能中 α 共轭核的结 合能是最大的,如图1所示^[1]。这些结合能大的原子 核都是 α 核的n倍, ${}^{12}C$ 是三倍的 α , ${}^{16}O$ 是4倍的 α , ${}^{20}Ne$ 是5倍的 α 。所以这些核就叫 α 的共轭核,从结 合能角度分析显示,这些n倍的 α 核有着特殊的稳定 性,这种特殊稳定性是和 α 团簇结构紧密相关。

对于原子核内的α团簇的研究已经有很长历

史。早在1938年,Hafstad和Teller^[2]通过对α共轭 核,比如⁸Be、¹²C、¹⁶O等基态结合能的分析得出结合 能和α团簇之间键的个数成正比,暗示这些核基态 中存在α团簇结构并且α-α之间存在有效相互作用, 揭示了这些原子核可能存在和多α相联系的动力学 对称性。Ikeda^[3-4]在早期画过一个团簇分子态的草 图,如图2所示。图中表示对于⁸Be,他认为可能有 一种构型—由两个α组成;¹²C由三个α组成;¹⁶O也 是同样的规律,由4个α组成。不同的原子核处在不 同激发态的时候,构型也会不同,例如,¹⁶O也可能变 成¹²C+α这种构型;²⁴Mg也可能变成¹²C+3α这种构 型。这些构型和原子分子物理里面一些分子态紧密 相关。

Fig.1 (a) Binding energy per nucleon for different light nuclei isotopes, (b) first excited energy as a function of the binding energy per nucleon. The dots in the small box correspond to atomic nuclei of ¹²C, ¹⁴C, ¹⁴C, ¹⁵N and ¹⁶O^[1].

图 2 团簇分子态的 IKEDA 图^[3-4] Fig.2 IKEDA diagram for the molecular states of clusters^[3-4]

α团簇在核物理界已引起了高度关注。图3是 发表在Nature的文章^[5]中的图示,它讨论了原子核 里面的α团簇之间的距离会影响原子核的状态。例 如,4α组成的¹⁶O,这些α之间如果距离大时,形成类 似于晶体的状态;当α距离合适时,则组成一个团簇 结构;当α之间的重叠非常多时,则对应的是一种类 似于量子液体。除此之外,α团簇的物理还包括玻 色-爱因斯坦凝聚(Bose-Einstein Condensate,BEC)、 从巴丁(Bardeen J)-库珀(Cooper L N)-徐瑞弗 (Schrieffer J R)(简称BCS)配对到BEC 配对的渡越 等。对于⁴⁰Ca这样的稍重一点的原子核,理论上提 出来(图4)⁴⁰Ca可以看成类似于10个 α 组成的一种 花环状的构型。

图3 原子核内的 α 团簇结构示意图^[5] 图中, $\alpha = b/r_0$,其中 b 是费米子的波函数的弥散度, r_0 是费米子之间的距离 **Fig.3** Diagram of α -cluster structures in nuclei^[5]

 $\alpha = b/r_0$, where b represents the dispersion of the wave function of a fermion and r_0 represents the distance between fermions

图 5 给出的是曹喜光等^[7]分析 Texas A&M-NIMROD实验组的重离子反应中²⁸Si的实验数据的 结果。在这个实验中,他们测到了²⁸Si 末态的7α出 射道,并获得了精细的激发能分布。激发能的峰值 分布意味着由7个α的这种参数分布。所以,从核反 应实验可以研究α团簇组成的这些原子核结构 信息。

α团簇结构在核天体物理研究中也是非常重要的,例如,核天体中著名的3α过程,如图6所示^[8]。 具体说,在天体核合成的过程中两个α可以形成⁸Be,而⁸Be再俘获一个⁴He就变成¹²C。在这种情况下,¹²C内部可能会存在3α结构。假如¹²C再去俘获一个α就变成¹⁶O内部也可能会存在4α结构。 ¹²C有一个特殊的激发态一Hoyle State,这个激发态 和α团簇有紧密关系,它在重元素合成过程中也扮

图5 ²⁸Si 的实验中找到了7个α:激发能函数分布图^[7] Fig.5 Distribution of the excitation energy for the results of 7-α observed in the ²⁸Si breakup experiment^[7]

演着十分重要的角色。图 7 是利用反对称分子动力 学 模 型 (Antisymmetrized Molecular Dynamics, AMD)模拟所得到的¹²C的结构,例如有基态、 2_1^+ 态、 0_2^+ 态、 0_2^+ 态、 0_3^+ 态^[9]。

目前,对应原子核α团簇态理论描述已有不少。 例如,α团簇模型(共振群方法和生成坐标方法)^[10-13]、THSR(Tohsaki-Horiuchi-Schuck-Röpke)波函数^[14]、分子动力学方法(反对称分子动力学模型^[15]、费米子分子动力学模型^[16]、扩展量子分子动力学模型^[15]、贵米子分子动力学模型^[16]、扩展量子分子动力学模型^[17]、从头算起方法^[18]、动力学对称模型^[19]、Hartree-Fock-Bogoliubov方法^[20]等。这些年来,这些模型都在团簇的相关研究中取得了一定的成功,在

图6 核天体物理中3α过程研究:*T*≈10⁸ K时,3α过程 示意图^[8]

Fig.6 Schematic of the 3α process at $T \approx 10^8$ K in nuclear astrophysics study^[8]

不同侧面对核反应和核结构进行了团簇态和现象的 描述。目前已有不少综述性文章介绍原子核α团簇 物理的进展,例如文献[21-23]。国内的学者近年来 在原子核α团簇结构相关实验与理论也取得了不少 重要进展,例如在理论上的发展^[17,24-27],以及实验上 的进展^[28-30]。这些工作的详细的内容,读者有兴趣 可以参考。

下面章节中,主要针对近些年我们利用在推广 的量子分子动力学(Extension of Quantum Molecular Dynamics, EQMD)框架中成功获得的不 同α团簇,研究它对核反应、核结构的影响,特别是 推广到相对论论重离子碰撞中,观测α团簇的初态 结构是否能对高能碰撞的结果产生影响^[31]。文章侧 重的观测量是巨共振谱、核子动量关联、集体流及其 涨落、多重性关联、双强子方位角关联等。

1 原子核构型与巨共振

1.1 EQMD中获得的轻核α团簇态

从模型角度来说,我们利用的是一个EQMD模型。与常规的量子分子动力学(Quantum Molecular Dynamics,QMD)模型相比较,EQMD模型具有不同的特点。第一点是EQMD引入了泡利势;还引入了波包宽度随时间变化的这一概念。在传统的量子分子动力学模型中,波包宽度都是给定的值,但是推广的量子分子动力学模型里面的波包宽度是随时间演变的。模型中引入的泡利势对α团簇的产生是非常重要。比如,我们利用推广的量子分子动力学模型得到的"O原子核在冷却之前,核内的核子分布基本上是随机的,在冷却之后就形成了类似于4团α的物

质,每一团物质都包含两个中子和两个质子这样的 一个α构型。图8给出了原子核中不同团簇结构的 物质密度分布等高图,其中⁸Be的基态即为已知的 典型双α团簇结构(图8(a))。¹²C的3-α态存在两种 不同的构型、链状(图8(b))和三角形(图8(c))。对 于¹⁶O的4-α态,得到了链状(图8(d))、方形(图8 (e))和风筝形(图8(f))。当然通过EQMD,也可以 研究原子核的中子皮、中子晕这样的现象。对于模 型的详细描述,可以参考文献[32]。

图 9(a)显示的¹²C,其中的三个 α 是链状的构型,这些 α 团簇的波包有明显重叠的区域。¹²C 的链状结构如图 9(c)所示的形状,三个 α 呈链状对应的是三个高斯波包。图 9(d)所示的是¹⁶O,将¹⁶O 看为是一个链状的4 α 的构型,这4个 α 之间的波包宽度如图 9(b)所示。

1.2 巨共振

我们研究组从2014年开始关注原子核内的α团 簇结构。首先是从研究低能核反应的巨偶极共振切 入,一直到现在扩展到高能的重离子碰撞,围绕α团 簇的效应开展了一些相关的研究工作^[33-55]。其中的 一些研究涉及到低能的核反应与核结构,包括重离 子碰撞反应以及光核反应。

对于α团簇的探索,我们提出可以通过巨共振 的探针来进行相关的研究。巨共振可以表示为原子 核的所有中子的质心和所有质子的质心发生的偶极 振荡。目前我们利用核反应输运模型已经得到了不 少的物理结果,如文献[34,56-63]。通过偶极振荡 的波形经过傅里叶变换后,会产生γ峰,γ的峰结构 对应的巨偶级共振(Giant Dipole Resonance, GDR), 如图10所示。图10(a)中的另一个叫作矮偶级共振 (Pygmy Dipole Resonance, PDR)。其物理意义指的 是把中子皮作为一个整体,与除去中子皮的剩余核 子作为另一个整体,这两个质心之间的振荡也会产 生一个共振的峰,将这样的共振峰就定义为软模式 的共振,或称之为矮共振。这种共振模式在具有中 子皮和中子晕的核中比较常见。但是传统上,对于 很多原子核更多的是通过中子-质子之间的振荡来 获得GDR的信息。对于另外一种共振模式,我们称 为巨单极共振(Giant Monopole Resonances, GMR), 单极共振是一个原子核呼吸的行为,如图10(b)所 示,GMR与核物质的状态方程紧密相关。

1.3 EQMD框架下的GDR

通过量子分子动力学模拟,我们可以得到中子、 质子振荡,从而可以得到一个偶极振荡谱。偶极振 荡谱随时间演变,通过傅里叶变换得到能谱,所得能

图 8 EQMD 模拟得到的不同原子核中的不同团簇结构的物质密度分布等高图^[32] Fig.8 Contour maps of the matter density distribution for different cluster structures in different nuclei obtained using the EQMD model^[32]

图 9 ¹²C和¹⁶O的链状构型的 α 团簇的波包(a, b)和*x-y*平面的密度分布(c, d)^[32] **Fig.9** Wave packet distribution (a, b) and density distribution in the *x-y* plane (c, d) for the chain structures of ¹²C and ¹⁶O^[32]

图 10 巨偶极共振、矮偶极共振(a),以及巨单极共振(b) Fig.10 Giant dipole resonance (GDR), pigmy dipole resonance (PDR) (a), and giant monopole resonance (GMR) (b)

图 11 ¹⁶O在不同激发方向下的巨偶极共振振荡谱^[17]
 Fig.11 Giant dipole resonance of ¹⁶O in the excited (solid blue line) and non-excited (short dashed black line) directions^[17]

谱的高度就是巨偶极共振的强度。图11给出不同 激发方向下,¹⁶O的一个偶极振荡谱^[17]。这样就可以 比较GDR的强度与初态的¹⁶O结构的关系,去分析 原子核的α团簇究竟有没有产生效应。

图 12 给出了利用 EQMD 模型提取的¹⁶O 的 GDR分布和实验结果的比较。在图中三角形标记 的是实验数据点。假定¹⁶O里面没有α团簇,如图12 (a)蓝色的曲线。蓝色曲线有一个非常好的峰,但这 个峰的分布和实验数据的峰是有偏差的,理论计算 出来的峰值在20 MeV,但实验数据的点在25 MeV 附近。假如¹⁶O中是四面体的4α团簇结构,Bacca 等^[64]计算出来的GDR能谱是图中红色虚线标记的; 我们用 EQMD 计算的¹⁶O 的结果是蓝色的线(图 12 (b)),计算的结果跟黑色的实验数据符合得非常好。 通过以上比较表明,用 Woods-Saxon 分布或者称球 形的随机的核子分布不能拟合实验数据,而用四面 体的4α的结构能够跟实验数据拟合得非常好。

图 13 是类似的研究 ¹²C 的结果,没有α团簇结构 的计算的 GDR 峰在图中的最左边(红色线),能总体 与实验数据的主峰相符合,而考虑 3α团簇的三角形 结构的 GDR 峰显示在图中的右边的两个峰(蓝色 线),其与实验数据的右边两个高能峰位相接近,说 明 ¹²C 内部存在α团簇^[34],也说明 ¹²C 可能具有组态 混合。

基于以上研究我们提出:对于¹²C和¹⁶O这样的 具有α团簇构型的核,我们可以通过巨偶极共振,即 通过中子-质子之间的振荡产生的巨共振的谱来研 究原子核里是否存在α团簇(图14)。这项工作最主 要的特点是假定¹²C和¹⁶O里面有α团簇,但不管具 体的构型分布,在30 MeV附近存在一个由于α团簇 引起的峰。图14中分别给出了三种原子核,即⁸Be、 ¹²C和¹⁶O,它们对应的可能具有链状构型、三角形构 型、风筝形构型和方形构型的α团簇分布,但都存在 30 MeV附近的 GDR 峰位,而这个就是原子核里面 是有α团簇结构的特征 GDR 峰位。

图 12 EQMD 理论计算得到的¹⁶O 的巨偶极共振能谱的结果与实验结果的对比^[17] Fig.12 Comparisons between results of EQMD simulations and the experiment for ¹⁶O^[17]

我们进一步把 GDR 研究推广到α团簇的非共 轭核(图15),例如对⁶Li与⁶Be核,⁶Li核内可以看成α 团簇加上一个中子和质子,那么一个中子和质子有 一种可能性是形成一个氘核,此时的⁶Li核可以看成 是由一个α团簇+氘核组合形成。

另外一种构型则是α团簇+中子+质子,即三体

的构型,如图 16 所示^[51]。在这样构型的假定下,我 们可以把对应的巨偶极能谱图算出来。图 16(a~c) 中红色的线就是我们的计算结果。在上面内容中提 到,对于¹²C和¹⁶O这类α团簇的共轭核,α团簇的存 在会使得 GDR 能谱分布存在 30 MeV 的峰。的确, 图 16 中也存在这个 30 MeV 的特征峰,并且里面还

图14 具有不同α团簇结构的原子核的GDR激发谱研究^[34] Fig.14 Excited GDR spectra of different light nuclei with various alpha-cluster structures^[34]

图15 EQMD模型计算的⁶Li和⁹Be初始化结构示意图^[51] Fig.15 Schematic of the ⁶Li and ⁹Be initialization structures based on the computation of EOMD model^[51]

有单独的氘核的峰。如果我们将α团簇的峰与氘核 的峰按照一定的比例来组合成一个共振峰,基本上 能拟合实验数据。而对于⁹Be,可以看成两个α团簇 加上一个中子的构型。这种构型可以是链状的(图 15(c)),也可以是类似于三角形(图15(d)),即两个 α团簇摆在下面,中子摆在上面。同样,我们计算 了⁹Be的巨偶极共振(图16(d~f))。对应于链状和 三角形状构型,我们分别得到两个不同的峰位(图 16(d)、(e))。如果我们将4个峰位组合在一起之 后,结果是图16(f)中用红线表示的部分,这部分基 本上和实验数据也是符合的。也就是说,实验上观 测到的⁹Be比较复杂的GDR能谱结构,实际上是由 于核内不同的α团簇构型共同产生的结果。

1.4 α团簇与光核反应

除了巨共振方面的α团簇研究,我们还可以研 究其在光核反应里面的效应^[49]。我们利用 EOMD 模型,发展了光核反应计算。在光核反应中,利用高 能的光子打到12C里面,当12C是链状、三角形状和球 形的3α团簇结构,其结果是不一样的。在上海我们 已经建造完成了激光-电子-γ光源,该装置上可以用 来开展γ光核反应实验^[65-66],比如,利用γ光轰击¹²C 和¹⁶O去研究其末态现象,但是目前的能量还是在 30 MeV以下。如果在光子能量 70~140 MeV区域, 光核反应就可以用准氘近似来处理。比如,在处 理¹²C(γ,np)¹⁰B反应道^[36]。图17显示了在光子能量 从 70~120 MeV 时,具有三种不同的12C 结构的12C (γ,np)的残余核¹⁰B相对于中子和质子的质心的超 角(α3)分布。从图 17 可以看出,链状¹²C 结构的超 角相对接近2/3π,说明残余¹⁰B接近质子和中子的质 心。而球形结构显示出最宽的分布,三角形3α结构 则介于两者之间。从光子的入射能量来看,能量越 高,分布越窄,说明高能量光子的聚焦效应越强。在 图中,我们还给出了相应的超角分布的示意图。黑 色和红色的图分别对应于链条(黑色)和三角形3-α (红色)结构。一般来说,对于链状结构,¹⁰B余核更 接近于中子和质子的质心。

当γ光束打到原子核内部,除了可以激发出中 子和质子,还可以存在双质子出射道,如¹²C(γ,pp) ¹⁹Be和¹⁶O(γ,pp)¹⁴C。利用这样的核子发射道,我们 可以试图研究核子间的动量关联函数。在实验上, 当原子核发生了碰撞了之后我们可以用探测器阵列 探到中子和质子或者两个质子,然后去构建其动量 关联函数。通常,核子-核子动量关联函数在实验上 是通过关联的核子配对数的分布除以不关联的核子 配对数的分布得到了动量关联函数,经事件数归一 化后即获得关联函数的强度,关联强度通常是两核 子的相对动量Δq的函数。对于质子-质子的动量关 联函数,它有一个的特征,在相对动量20 MeV·c⁻¹位

图 16 非 α 共轭核的 GDR^[51] (a~c) ⁶Li,(d~f) ⁹Be Fig.16 GDR of non-α conjugate nuclei^[51] (a~c) ⁶Li, (d~f) ⁹Be

图 17 ¹²C(γ, np)¹⁰B出射的残余核 ¹⁰B相对于 ¹²C 三体衰变产 生的中子和质子的质心的超角分布(α₃)对应的结果是 ¹²C 的 三种α团簇结构的结果(链式 3α、三角 3α和球形)^[49] 图中的插页显示了链式 3α团簇结构(黑色)和三角形 3α团簇 结构(红色)情况下的示意图

Fig.17 Distributions of the hyperangle (α_3) between the residual nucleus ¹⁰B emitting from ¹²C(γ , np) ¹⁰B and the centroids of neutrons and protons produced by the decay of the three-body system for three types of α -cluster configurations (chain, triangle, and sphere)^[49]. The insets present the chain-like (black) and triangle (red) configurations.

置附近有一个很强的峰位,这个峰位是因为质子与 质子的强相互作用引起的。通过峰位的高低可以得 到质子-质子发射源的大小。图 18 是用 100 MeV 的 光子打¹²C的模拟结果,根据图示,链状的、三角形的 以及球形的3α结构,分析发现存在很大的差别。球 状核发射的核子-核子动量关联函数是比较大的,而 链状核的核子-核子动量关联函数是最小的。对 于16O的也是如此,16O从构型上来说是更复杂的,有 链状的、风筝状的、方形的以及四面体的。结果表 明:球形的核子-核子动量关联函数最大,而链状的 动量关联函数最小。通过核子-核子动量关联函数 方法还可以提取发射源。研究发射源的对应关系。 图 18(c,d)表明,通过核子-核子动量关联函数可以 把发射源的尺寸提取出来,如图18所示,发射源的 尺寸与¹²C和¹⁶O的构型是相关的。所以,通过动量 关联函数,一方面可以对α团簇的构型有一个判断, 另一方面可以把发射源的尺寸提取出来。

对于非全同粒子,我们还可以通过动量关联函数估计哪些粒子早发射,哪些粒子晚发射^[44]。例如,可以通过研究中子-质子动量关联函数来判别中子、

图 18 质子-质子动量与不同原子核内的 Cluster 构型(a, b)及提取的发射源尺寸(c, d)的关联函数图^[49]
 Fig.18 Proton-proton momentum correlation function for the 100-MeV-photon-induced ¹²C reaction with different ¹²C cluster configurations (a, b) and the extracted emission source size (c, d)^[49]

图 19 100 MeV 的光子与不同α团簇构型 ¹²C (a)和 ¹⁶O (b)反 应产生的非全同粒子的中子-质子动量关联函数之比^[44] **Fig.19** Ratio of the correlation function between C_n and C_p , where C_n represents C_{np} gated with vn > vp and C_p represents C_{np} gated with vn < vp for 100-MeV-induced three-body photodisintegration of ¹²C (a) and ¹⁶O (b)^[44]

质子发射次序。通过构建一个中子的速度比质子的 速度快的条件下的中子-质子动量关联函数(C_n),和 另一个中子的速度比质子的速度慢的情况下的中 子-质子动量关联函数(C_p),将以上两个动量关联函 数相除后,得到C_n/C_p,如图19所示。在图19中可以 发现,对于球形的构型,是紫色的线,在相除之后基 本等于1。对于三角形与链状的构型,C_a/C_p是小于1 的。这个说明了中子与质子的发射次序对于球形构 型基本上是一样的,而对于链状和三角形的构型,中 子和质子的发射次序是有所差别的,从平均上说是 质子的发射要早于中子。α簇状结构和非簇状球形 Woods-Saxon(WS)结构之间的np发射时间序列不 同的原因可能是α团簇内质子的库仑排斥力强于球 形非团簇核内的质子,导致前者容易加速。因此,对 于非全同粒子,我们可以通过动量关联函数研究不 同α团簇构型的核子发射次序问题。近来,我们也 把此方法应用到相对论重离子碰撞中,通过质子-氘-氚之间不同的关联组合,研究他们的发射 时序^[67]。

2 原子核团簇与相对论重离子碰撞

2.1 AMPT 模型和不同 α 团簇引起的重离子碰撞 密度分布

前面这些研究工作都是能量比较低的情况,体系的能量在100 MeV·A⁻¹附近的重离子反应或光核反应。我们可以进一步把α团簇的效应扩展到夸克自由度中。在这方面,我们的第一个工作是研究¹²C+¹⁹⁷Au系统,碰撞的质心系能量在10 GeV和200 GeV^[35]。对于这类相对论重离子碰撞,理论上研究多是利用既考虑部分子相互作用又考虑强子散射的输运模型,例如 AMPT 模型(多相输运模型,A Multi-Phase Transport model),它是一个处理多个阶

段的输运模型,能较好地描述高能重离子碰撞的不同阶段^[68-69]。AMPT模型是基于蒙特卡罗方法所开展的,它能很好地把夸克自由度引入到模型中,同时考虑了强子间的散射。在前面的介绍中我们可以知道,EQMD模型可以给出一个非常好的初态分布,例如¹²C可能存在3α的链状结构或三角形结构,或者是球形结构。因此,我们考虑将这些不同的团簇结

构放到AMPT模型里面做原子核的初态核子分布。 对于¹²C,其坐标空间的横向平面的二维分布如图20 所示。从左到右,分别对应于¹²C的3α团簇链状的 分布、三角形的分布、球形的分布,它们在中心区的 密度分布都有所不同;图20(a~c)对应的是初始核子 分布,图20(d~f)是参与者的核子分布。

图 20 AMPT 模型中的不同构型的¹²C 核^[55,56] (a~c) 初始核子分布,(d~f) 参与者的核子分布 Fig.20 Different configurations of ¹²C in the AMPT model^[35,56] Distribution of initial nucleons (a~c) and participant's nucleons (d~f)

进一步,我们可以给出在不同构型的初态核下的AMPT模型模拟得到的不同阶段的坐标分布^[40],如图21所示,分别是对于"C+Au碰撞的参与者区域的三种构型的分布;接着是初始部分子的三种构型的分布;然后到末态部分子的三种构型的分布;一直到反应的末态一强子,没有强子再散射和含有强子再散射的不同状态的分布。除了坐标空间分布的研究外,还可以研究动量空间分布(图22)。

2.2 α团簇结构与椭圆流和三角流的关系

坐标空间的信息虽然在模型上是可以研究的, 但是在实验上是不可测量的。对应动量空间,实验 上的一个可观测量是椭圆流或者三阶流^[70]。图23 给出了椭圆流(v₂)与多重数的关系^[35]。图23示例图 中蓝色线是链状的¹²C,结果表明,链状的¹²C的椭圆 流随着事件的粒子数多重性(对应于碰撞中心度)的 增加有非常好的线性增加。而对于三角形的¹²C(黑 色的三角形)或者 Woods-Saxon 分布的球形(红色的 球形)的¹²C,基本上随着多重数的增加不发生变化。 所以这也意味着,可以通过测量椭圆流与多重数的 关系来判断¹²C是链状的构型还是球形或者三角形。 图 23 上面的是质心系 200 GeV的反应体系,下面是 质心系 10 GeV的反应体系。后者虽然能量比 200 GeV的低,但是其链状 3α构型的椭圆流也是线 性增加的。这样的行为也是好理解的,因为¹²C的3α 构型,假如是链状的,实际上椭圆流在某种程度上和 3α呈线性分布相关联。链状的 3α的结构的椭圆流 实际是与偏心率相关的,因为这种分布的初态偏心 率是比较大的,所以对应的椭圆流的发展也是比较 大。而对于三角形和球形,其偏心率是不大的,因此 三角形和球状的椭圆流是比较小且随粒子的多重性 演化是比较平坦的。因此从这个角度来说,链状的 3α结构对椭圆流是非常敏感的。

进一步,我们还研究了三角流(v₃)。在动量空 间三角流也有类似三角形的分布。研究结果发现, 当研究三阶流与多重性的关系时,图24中三角形的

Fig.21 Density distributions in the *xy* plane at different phases for different initial alpha-cluster states in the coordinate $space^{[40]}$

符号是显示的三角形的3α初态所产生的三角流,相 比链状和球形的,它的值大许多而且随多重数的增 加几乎线性增加。3α的三角形结构的v₃随着多重 数的增加有快速的增长。而对于链状的和球形3α 结构,v₃的值基本上是差不多的,而且随着多重数的 增加变化不大。图24上面一行图是质心系能量 200 GeV的结果,下面一行是质心系10 GeV的结 果。10 GeV的结果也说明了和200 GeV同样的结 果。综上所述,我们可以从实验上去测量v₃、v₂来获 得初态构型的信息,如¹²C+¹⁹⁷Au的v₃、v₂可以通过多 重性的依赖性来确定¹²C的构型是链状还是三角形。 如果实验上能同时给出的v₃、v₂的结果,在数据处理 的时候也可以得到v₃/v₂,这样一些系统的误差的效 应可以抵消掉。如果实验测量的v₃/v₂结果是非常 好的线性增长,说明¹²C具有三角形的3α构型。

在图 25 中,给出了α团簇的结构效应对偏心率 的影响^[45-46]。这里考虑的是质心系 6.73 TeV 的几个 对称碰撞,即¹⁰B+¹⁰B 碰撞、¹²C+¹²C 碰撞、¹⁶O+¹⁶O 碰 撞、²⁰Ne+²⁰Ne 碰撞、⁴⁰Ca+⁴⁰Ca 碰撞和²⁰⁸Pb+²⁰⁸Pb 碰撞。 通过对这些系统扫描,计算二级偏心率(a)、三阶偏

图22 动量空间下不同的初态构型分布对应的不同阶段的 *p_x-p_y*平面的密度分布^[40]

Fig.22 Density distributions in the $p_x - p_y$ plane at different phases for different initial alpha-cluster states in the momentum space^[40]

心率(b)、四阶偏心率(c),结果发现:对于有α团簇 构型的那些原子核会偏离标度率。例如,图25右下 角的图中蓝色的符号就对应着链状的结构,链状的 符号明显偏离了系统扫描的标度率。这就意味着α 团簇效应对这些不同阶次偏心率是非常敏感的。

进一步,我们讨论动量空间的信息,即椭圆流 (v₂)、三角流(v₃)和四阶流(v₄)的多重性依赖性,分 布对应于图26的第一排到第三排。图中黑色的点 对应的是常规球形核系统的依赖,作为基准参 考^[45-46]。但是考虑了不同的α团簇之后,发现计算得 到的v₂、v₃、v₄随多重性的变化会偏离球形值的系统 学。由此,我们提出对于不同尺寸的系统扫描,研究 其椭圆流或者三角流有没有偏离系统学行为。如果 是的话,就说明是存在某一种α团簇结构。

2.3 α团簇结构与集体流的涨落和多重性关联

进一步,除了我们发现α团簇对集体流的平均 值产生影响外,它对于椭圆流或者三阶流的高阶涨 落也是有影响的,如图27所示^[48]。我们的研究发 现,对于三阶流的涨落,如图27中的右栏所示,三角 形的α团簇分布的kurtosis(峰度)涨落的绝对值要远 远大于球形核(WS分布)的涨落。WS的kurtosis涨 落在零附近,但是三角形的涨落是负的值,甚至要到

马余刚:原子核中的α团簇对核反应与相对论重离子碰撞的影响

图 24 ¹²C不同的3α构型与三阶流的关系^[5] Fig.24 Relationship between different 3α configurations of ¹²C and the triangular flow^[35]

图 25 α团簇结构效应对偏心率影响^[45-46] Fig.25 Effect of α-clustering structures on eccentricity^[45-46]

-1 左右。但对于v₃的偏度(Skewness)和v₂的偏度 和峰度,都没有看到明显的差别。由此,若对三角流 进行高阶的涨落研究可以判别原子核是不是三角形 构型。

如图28中,我们还可以通过α团簇的原子核¹⁶O 和¹⁹⁷Au核或其他系统的碰撞进行模拟,通过研究系 统的v₃/v₂与多重数关联(图28(a~c)),利用偏离系 统学行为可以来判定¹⁶O的4α团簇构型。也可以通 过前向多重数与背向多重数的关联去研究¹⁶O的四 面体和¹⁶O球形核的不同,如图28(d、e)所示。

2.4 α团簇结构与双强子方位角关联

双强子方位角关联是相对论重离子碰撞中的一 个重要观测量。在研究中,通常选一个具有最高横 动量的粒子作为触发粒子,然后去看其他关联粒子 与之的方位角差,通过背景的扣除后获得双强子关 联函数。在我们的工作中,我们通过使用多相输运 模型(A Multi-Phase Transport, AMPT)模拟质心系

图 26 不同系统的集体流与不同的¹⁶O和¹²C的α团簇结构对集体流的影响^[45-46] Fig.26 Collective flows of different collisions systems and the effects of the α-clustering structures of ¹⁶O and ¹²C collisions on collective flows^[45-46]

图 27 α团簇结构对集体流高阶涨落的影响^[48] **Fig.27** Influence of different alpha-cluster structures on high-order fluctuation of collective flows^[48]

6.37 TeV的重离子对撞的中心碰撞事例,研究了一系列对称重离子碰撞体系,即从¹⁰B+¹⁰B,¹²C+¹²C, ¹⁶O+¹⁶O,⁴⁰Ca+⁴⁰Ca,⁹⁶Zr+⁹⁶Zr到¹⁹⁷Au+¹⁹⁷Au,其中涉及 α团簇结构的是¹²C和¹⁶O的对撞系统^[71]。我们通过 原始信号的零产率(Zero Yield at Minimum,ZYAM) 方法,进行了背景减去远离侧(Away-side)双强子方 位角的关联,发现如果核子具有正常的 Woods-

Saxon(伍兹-撒克逊)核子分布,远边(Away-side)的 双强子方位角的关联的RMS(Root Mean Square)宽 度和Kurtosis等定量参数呈现了很好遵循系统大小 的A⁻¹³规律。然而,对于α团簇结构的轻核,即¹²C 和¹⁶O,远离侧方位角相关的均方根宽度和Kurtosis 都偏离了A⁻¹³规律的基线。结果表明:在Woods-Saxon分布和α团簇结构之间,双强子关联函数的远

图 28 ¹⁶O的不同 4α构型下集体流与多重数的关联以及前向-背向多重数的关联^[45,55] Fig.28 Correlation between the collective flow and multiplicity and the forward-backward multiplicity for different ¹⁶O four-alpha cluster configurations^[45,55]

离侧RMS宽度和Kurtosis参数有明显区别,这说明 通过碰撞系统扫描的双强子方位角关联作为区分α 团簇核的探针。图29(a、c)显示了弦融化机制下的 AMPT模型计算得到的RMS和Kurtosis,图29(b、d)显示了缺省模式机制下的AMPT模型计算得到的RMS和Kurtosis结果。

 图 29 AMPT 模型计算得到的 away-side 双强子关联函数的 RMS 和 Kurtosis^[70] (a、c) 显示了弦融化机制下 AMPT 的结果,(b、d) 显示了缺省模式机制下 AMPT 的结果
 Fig.29 RMS and Kurtosis of away-side double-hadron correlation functions calculated using the AMPT model^[70] The results in (a, c) are those with string melting, and the results in (b, d) are those without string melting.

2.5 α团簇结构与热光子的集体流

进一步,通过重离子碰撞中的光子的集体流的 行为,我们也可以研究 α 团簇效应^[52]。首先,对于低 能 *E/A*=44 MeV、碰撞参数 *b*=5.0 fm 的⁸⁶Kr+¹²C 重离 子碰撞,我们在 EQMD 框架下计算了反应产生的直 接光子的定向流(a)、椭圆流(b)与快度的关系,如图 30 所示。对应的自由质子的相同观测结果显示在 图 30(c、d)中。红色的三角形和蓝色的球体分别代 表¹²C 的三角形和球形构型。很明显,即使在不对称 的系统中,直接光子的v₁也有一个清晰的 S 形曲线。 然而,由于弹核与靶核的不对称,自由质子的v₁的形 状是不规则的。直接光子的这一特征可以用几何学 上的旁观者-参与者模型来解释。该模型描述了在 轫致辐射处理过程中,来自射弹或靶核的粒子数量 相同。另一个重要原因是,直接光子很少被周围的 核物质吸收,因此,直接光子的v₁可以保持其形状。 在图 30(a)中,我们观察到直接光子的正流参数,然 而,由于周围物质的严重影响,在图 30(c)所示的不 对称情况下,很难确认自由质子的信号。众所周知, 在平均场和核-核碰撞之间存在竞争的费米-能区 中,核吸引力占主导地位。一般来说,对于对称系统 来说,如果吸引力占主导地位,就会出现负的流参 数。然而,在不对称系统的情况下,根据 EQMD 模 拟,这种关系似乎又不能得到满足。此外,在图 30 (a)中我们可以看到,三角形和球形构型之间直接光 子的v₁差异,用三角形构型的计算的定向流的强度 比用球形构型计算的强度略大。

图 30 E/A=44 MeV、碰撞参数 b=5.0 fm 的⁸⁶Kr+¹²C 重离子碰撞产生的直接光子的定向流(a)、椭圆流(b)与快度的关系^[52]。
 对应的自由质子的相同观测结果显示在(c、d)中。红色的三角形和蓝色的球体分别代表¹²C 的三角形和球形构型
 Fig.30 Directed flow (a) and elliptic flow (b) as functions of rapidity for the directed photon in ⁸⁶Kr+¹²C collisions at *E*/A=44 MeV and an impact parameter of b=5.0 fm^[52]. The results shown in (c, d) correspond to a free proton. Red triangles and bule circles correspond to triangle clusters and sphere clusters, respectively.

另外,对应相对论重离子碰撞,我们在AMPT模型的框架下,通过用不同初态,计算了200 GeV·c⁻¹ 质心系能量时三角形、链状的或者球形的¹²C与¹⁹⁷Au 体系碰撞,发现给出的热光子的椭圆流大小和没有 α团簇是完全不一样的^[53]。图31中的v₃,对于没有α 团簇,其值就非常小。但是对于3α构型,v₃是非常

大的;对于*v*₂,不同α团簇的转向热光子的椭圆流也 很不一样,它们的值都远大于球形核的值。由此,我 们可以利用高能重离子中产生的热光子来研究α团 簇的效应。

2.6 α团簇结构与方位角相关的HBT半径

前面内容中,我们曾介绍了在光核反应中可以

图 31 不同 α 团簇与热光子的物理量的关系^[53] **Fig.31** Correlation diagram between various α cluster and physics variables of thermal photon^[53]

通过质子-中子或者质子-质子的动量关联函数研究 α团簇。而在高能的重离子碰撞中,也可以通过中 子或者质子-质子的动量关联函数研究¹²C的α团簇 效应^[43]。图 32显示了对于链状的3α构型的¹²C,如 十字符号所示;而三角形的符号就表示¹²C三角形的 构型,其中的半径,通过动量关联函数提取出来。图 32 中就是半径的平方随着方位角分布的依赖性。 发现链状的¹²C的分布是在上面,要比三角形的半径 的平方要大。这也显示α团簇对于动量关联函数提 取的半径大小是非常敏感的。

图 32¹²C的α团簇对动量关联函数提取的半径值平方的影响^[43] Fig.32 Effect of the α cluster of ¹²C on the squares of radii extracted from momentum correlation function^[43]

2.7 机器学习α团簇结构

目前,通过机器学习研究不同核物理课题已经成为了一个热点,机器学习在不同领域的研究与应用逐渐成为一种新的科研范式。国内的学者在核物理的机器学习研究中已取得了不少成绩,例如通过机器学习研究原子核的温度^[72]、液气相变^[73]、原子核的结合能^[74-76]。近期,也有几篇相关的综述发表^[77-79]。同时机器学习的应用与技术发展也体现了

多个领域,例如文献[80-94]。在图 33 这项工作 中^[50],我们通过机器学习的办法来判别核-核碰撞的 末态中系统的初态对应的是否¹²C的三角形,或者 是¹⁶O的四面体。我们用¹²C或¹⁶O和¹⁹⁷Au发生碰 撞,碰撞的质心系能量在200 GeV,通过机器学习的 办法最后可以给出非常高的精度,以90%的精度可 以来判断初态是有α团簇的¹²C,还是α团簇的¹⁶O结 构。因此,机器学习的方法的确是很有用的,可以通 过这种方法来判断特定碰撞核的初态结构。

图 33 利用机器学习分析α团簇^[50] Fig.33 Analysis of the α-cluster using machine learning^[50]

2.8 α团簇结构与电磁场分布

原子核的α团簇还会产生很多别的效应,例如 可能对电磁场的影响。在高能重离子碰撞中,由于 带电的重离子速度非常快,会产生很大电磁场。通 过计算,电磁场可以达到10¹⁴ T左右。这么强的磁 场当然在自然界里面应该是最高的,但这是实验室 产生的。高能的重离子碰撞产生的磁场可以用模型 进行计算,例如可以利用 AMPT 模型,通过 Lienard-Wiechert 势计算电磁场。

我们也研究了α团簇的原子核对电磁场的影响。图34显示了AMPT模型的计算结果,其中展示 了球形、链状,以及三角形的¹²C的¹²C+¹⁹⁷Au碰撞模 拟^[42]。比较发现,电磁场的结果在不同的构型下是 有差别的。图34中链状的分布是蓝色的,它的磁场 要比其他两种构型要大。对于电场(图34(b))链状 的¹²C+¹⁹⁷Au,得到的电场强度要比球形的和三角形 的要小。该研究说明了如果原子核初态具有不同的 结构分布,它会影响重离子碰撞产生的电磁场的 大小。

3 结语

本文首先介绍了原子核的团簇结构及其发展, 但重点介绍了作者团队这些年一些相关的工作。我 们利用 EOMD 模型计算获得了¹²C 和¹⁶O 的不同 α 团 簇结构,并发现α团簇的巨共振特征峰位,随后我们 推广计算了非α共轭核团簇结构轻核的巨偶极共 振,它们都能较好地描述实验结果。利用光核反应 机制,我们研究了12C和16O衰变道的质子-质子动量 关联函数、中子和质子动量关联函数,给出在不同的 α团簇结构的原子核的双质子关联的差异,指出了 它与构型与源尺寸的关系。另外,通过非全同粒子-质子和中子的动量关联函数,我们可以提取中子、质 子的发射时间次序与团簇结构的依赖性。除了对低 能核反应的团簇结构研究外,本文还介绍了我们在 相对论重离子碰撞中关于原子闭簇结构的相关研 究。在相对论重离子碰撞中,集体流对于α团簇结 构非常敏感的。进一步,α团簇的不同构型的初态 几何涨落,导致末态粒子的集体流高阶涨落,偏心率 以及双强子关联产生了不同程度的影响。另外,由 于原子核的几何分布不同,在重离子碰撞中里面产 生的电磁场的大小也是有差别的。在α团簇的研究

图 34 α 团簇对磁场(a)和电场(b)的影响^[42] Fig.34 Effects of the α -cluster on the magnetic field (a) and electric field (b)^[42]

中,我们也利用机器学习的方法。结果表明在对于 构型的识别上,机器学习是一种很有潜力的方法。 希望在未来的实验中,比如,建议大型强子对撞机 (Large Hadron Collider, LHC)上的¹⁶O+¹⁶O碰撞实 验,通过理论研究α团簇的结果可以得到进一步的 验证。同时,也期待更多对于α团簇的理论研究,给 出更多关于原子核中α团簇的性质和信息。总之,α 团簇是一个非常好的课题,能把低能的核结构信息 与中高能的重离子碰撞物理相联系。

致谢 值此张焕乔院士90华诞之际,谨以此文以示 祝贺。张焕乔先生1956年从北京大学物理系毕业 后开始核物理研究工作,长期在中国原子能院工作。 也曾在前苏联科学院库尔恰托夫原子能研究所实 习,在意大利里亚洛国家实验室工作访问。1997年 当选中国科学院院士。张焕乔先生主要从事中子物 理、裂变物理和重离子反应的实验研究,长期以来一 直关心与推动中国核物理的全面发展。作者与张先 生交往多年,承蒙得到张先生多方面的关心与支持。 作者此文以原子核的α团簇为选题,把低能的核结 构现象与高能的重离子碰撞相联系,以此感谢张焕 乔先生虽然自身从事低能核物理研究但也一直大力 支持高能核物理的发展。另外,作者感谢邓先概博 士和河南师范大学的武文若同学对文稿的整理。

作者贡献声明 文章列出的成果都有参考文献所指明,其中的大部分成果由作者及其领导的团队所 完成。

参考文献

1 何万兵. 奇异结构原子核的巨偶极共振性质研究[D]. 北 京: 中国科学院大学, 2015.

HE Wanbing. Study on giant dipole resonance properties

of singular structure nuclei[D]. Beijing: University of Chinese Academy of Sciences, 2015.

- Hafstad L R, Teller E. The alpha-particle model of the nucleus[J]. Physical Review, 1938, 54(9): 681 692. DOI: 10.1103/physrev.54.681.
- 3 Ikeda K, Takigawa N, Horiuchi H. The systematic structure-change into the molecule-like structures in the self-conjugate 4n nuclei[J]. Progress of Theoretical Physics Supplement, 1968, E68: 464 - 475. DOI: 10. 1143/PTPS.E68.464.
- von Oertzen W, Freer M, Kanada-En'yo Y. Nuclear clusters and nuclear molecules[J]. Physics Reports, 2006, 432(2): 43 113. DOI: 10.1016/j.physrep.2006.07.001.
- 5 Ebran J P, Khan E, Nikšić T, *et al.* How atomic nuclei cluster[J]. Nature, 2012, 487(7407): 341 344. DOI: 10. 1038/nature11246.
- Ichikawa T, Maruhn J A, Itagaki N, *et al.* Existence of an exotic torus configuration in high-spin excited states of ⁴⁰Ca[J]. Physical Review Letters, 2012, **109**(23): 232503. DOI: 10.1103/physrevlett.109.232503.
- 7 Cao X G, Kim E J, Schmidt K, *et al.* Examination of evidence for resonances at high excitation energy in the 7α disassembly of ²⁸Si[J]. Physical Review C, 2019, 99: 014606. DOI: 10.1103/physrevc.99.014606.
- 8 Wheldon T K. Nuclear Science at Birmingham: training, research and applications[EB/OL]. 2018. https://indico. jlab.org/event/280/contributions/3952.
- 9 Kanada-En'yo Y, Kimura M, Ono A. Antisymmetrized molecular dynamics and its applications to cluster phenomena[J]. Progress of Theoretical and Experimental Physics, 2012, 2012(1): 01A202. DOI: 10.1093/ptep/ pts001.

- Wheeler J A. On the mathematical description of light nuclei by the method of resonating group structure[J]. Physical Review, 1937, 52(11): 1107 1122. DOI: 10. 1103/physrev.52.1107.
- Wheeler J A. Molecular viewpoints in nuclear structure
 [J]. Physical Review, 1937, 52(11): 1083 1106. DOI: 10.
 1103/physrev.52.1083.
- 12 Hill D L, Wheeler J A. Nuclear constitution and the interpretation of fission phenomena[J]. Physical Review, 1953, 89(5): 1102 - 1145. DOI: 10.1103/physrev.89.1102.
- 13 Brink D M. The alpha-particle model of light nuclei[C]// Many-body Description of Nuclear Structure and Reactions: Proceedings of the International School of Physics "Enrico Fermi": course XXXVI: Varenna on Lake Como, Villa Monsaxteror, 26th July - 14th August, Academic Press, 1965: 247 - 276.
- Tohsaki A, Horiuchi H, Schuck P, *et al.* Alpha cluster condensation in ¹²C and ¹⁶O[J]. Physical Review Letters, 2001, **87**(19): 192501. DOI: 10.1103/physrevlett. 87. 192501.
- 15 Kanada-En'yo Y. The structure of ground and excited states of ¹²C[J]. Progress of Theoretical Physics, 2007, 117 (4): 655 680. DOI: 10.1143/ptp.117.655.
- 16 Chernykh M, Feldmeier H, Neff T, *et al.* Structure of the hoyle state in ¹²C[J]. Physical Review Letters, 2007, **98** (3): 032501. DOI: 10.1103/physrevlett.98.032501.
- He W B , Ma Y G, Cao X G, *et al.* Giant dipole resonance as a fingerprint of α clustering configurations in ¹²C and ¹⁶O[J]. Physical Review Letters, 2014, **113**(3): 032506. DOI: 10.1103/physrevlett.113.032506.
- 18 Epelbaum E, Krebs H, Lee D A, et al. Ab Initio calculation of the hoyle state[J]. Physical Review Letters, 2011, 106(19): 192501. DOI: 10.1103/physrevlett. 106. 192501.
- 19 Marín-Lámbarri D J, Bijker R, Freer M, *et al.* Evidence for triangular D_{3h} symmetry in ¹²C[J]. Physical Review Letters, 2014, **113**: 012502. DOI: 10.1103/physrevlett. 113.012502.
- 20 Girod M, Schuck P. α-particle clustering from expanding self-conjugate nuclei within the hartree-fock-bogoliubov approach[J]. Physical Review Letters, 2013, 111(13): 132503. DOI: 10.1103/physrevlett.111.132503.
- von Oertzen W, Freer M, Kanada-En'yo Y. Nuclear clusters and nuclear molecules[J]. Physics Reports, 2006, 432(2): 43 113. DOI: 10.1016/j.physrep.2006.07.001.
- 22 Freer M, Fynbo H O U. The hoyle state in ¹²C[J]. Progress

in Particle and Nuclear Physics, 2014, **78**: 1 - 23. DOI: 10.1016/j.ppnp.2014.06.001.

- Freer M, Horiuchi H, Kanada-En'yo Y, *et al.* Microscopic clustering in light nuclei[J]. Reviews of Modern Physics, 2018, **90**(3): 035004. DOI: 10.1103/revmodphys. 90. 035004.
- 24 Zhou B, Funaki Y, Horiuchi H, et al. Nonlocalized clustering: a new concept in nuclear cluster structure physics[J]. Physical Review Letters, 2013, 110(26): 262501. DOI: 10.1103/physrevlett.110.262501.
- 25 Zhao P W, Itagaki N, Meng J. Rod-shaped nuclei at extreme spin and isospin[J]. Physical Review Letters, 2015, **115**(2): 022501. DOI: 10.1103/physrevlett. 115. 022501.
- 26 Ren Z X, Vretenar D, Nikšić T, *et al.* Dynamical synthesis of ⁴He in the scission phase of nuclear fission[J]. Physical Review Letters, 2022, **128**(17): 172501. DOI: 10.1103/ physrevlett.128.172501.
- Wang C W, Zhou B, Ma Y G. Nonlocalized clustering in ¹⁸O[J]. The European Physical Journal A, 2023, **59**(3): 49. DOI: 10.1140/epja/s10050-023-00961-5.
- 28 Yang Z H, Ye Y L, Li Z H, *et al.* Observation of enhanced monopole strength and clustering in ¹²Be[J]. Physical Review Letters, 2014, **112**(16): 162501. DOI: 10.1103/ physrevlett.112.162501.
- Liu Y, Ye Y L, Lou J L, *et al.* Positive-parity linear-chain molecular band in ¹⁶C[J]. Physical Review Letters, 2020, 124(19): 192501. DOI: 10.1103/physrevlett.124.192501.
- 30 Zhang Z Y, Yang H B, Huang M H, *et al.* New α-emitting isotope ²¹⁴U and abnormal enhancement of α -particle clustering in lightest uranium isotopes[J]. Physical Review Letters, 2021, **126**(15): 152502. DOI: 10.1103/ physrevlett.126.152502.
- 31 Ma Y G, Zhang S. Influence of nuclear structure in relativistic heavy-ion collisions[M]. Handbook of Nuclear Physics, Springer, Singapore, 2022. DOI: 10.1007/978-981-15-8818-1_5-1.
- 32 何万兵,曹喜光,马余刚,等. EQMD模型在轻核奇异结构研究中的应用[J].核技术,2014,37(10):100511.DOI: 10.11889/j.0253-3219.2014.hjs.37.100511.

HE Wanbing, CAO Xiguang, MA Yugang, *et al.* Application of EQMD model to researches of nuclear exotic structures[J]. Nuclear Techniques, 2014, **37**(10): 100511. DOI: 10.11889/j.0253-3219.2014.hjs.37.100511.

33 曹喜光, 马余刚. 轻核α团簇结构理论和实验研究进展
 [J]. 科学通报, 2015, 60(17): 1557 - 1564. DOI: 10.1360/

N972014-01335.

CAO Xiguang, MA Yugang. Progress of theoretical and experimental studies on α cluster structures in light nuclei [J]. Chinese Science Bulletin, 2015, **60**(17): 1557 – 1564. DOI: 10.1360/N972014-01335.

- He W B, Ma Y G, Cao X G, *et al.* Dipole oscillation modes in light α-clustering nuclei[J]. Physical Review C, 2016, 94: 014301. DOI: 10.1103/physrevc.94.014301.
- 35 Zhang S, Ma Y G, Chen J H, et al. Nuclear cluster structure effect on elliptic and triangular flows in heavyion collisions[J]. Physical Review C, 2017, 95(6): 064904. DOI: 10.1103/physrevc.95.064904.
- Huang B S, Ma Y G, He W B. Photonuclear reaction as a probe for α-clustering nuclei in the quasi-deuteron region [J]. Physical Review C, 2017, 95(3): 034606. DOI: 10.1103/physrevc.95.034606.
- Huang B S, Ma Y G, He W B. Alpha-clustering effects on ¹⁶O(γ, np)¹⁴N in the quasi-deuteron region[J]. The European Physical Journal A, 2017, **53**(6): 119. DOI: 10. 1140/epja/i2017-12300-0.
- 38 Guo C C, He W B, Ma Y G. Collective flows of ¹⁶O+¹⁶O collisions with α -clustering configurations[J]. Chinese Physics Letters, 2017, 34(9): 092101. DOI: 10.1088/0256-307x/34/9/092101.
- 39 Xu Z W, Zhang S, Ma Y G, *et al.* Influence of α clustering nuclear structure on the rotating collision system[J]. Nuclear Science and Techniques, 2018, 29(12): 186. DOI: 10.1007/s41365-018-0523-9.
- Zhang S, Ma Y G, Chen J H, *et al.* Collective flows of α-clustering ¹²C+¹⁹⁷Au by using different flow analysis methods[J]. The European Physical Journal A, 2018, 54 (9): 161. DOI: 10.1140/epja/i2018-12597-y.
- 41 Guo C C, Ma Y G, An Z D, *et al.* Influence of α clustering configurations in ¹⁶O+¹⁹⁷Au collisions at Fermi energy[J]. Physical Review C, 2019, **99**(4): 044607. DOI: 10.1103/physrevc.99.044607.
- Cheng Y L, Zhang S, Ma Y G, *et al.* Electromagnetic field from asymmetric to symmetric heavy-ion collisions at 200 GeV/c[J]. Physical Review C, 2019, **99**(5): 054906.
 DOI: 10.1103/physrevc.99.054906.
- He J J, Zhang S, Ma Y G, *et al.* Clustering structure effect on Hanbury-Brown – Twiss correlation in ¹²C+¹⁹⁷Au collisions at 200 GeV[J]. The European Physical Journal A, 2020, 56(2): 52. DOI: 10.1140/epja/s10050-019-00002-0.
- 44 Huang B S, Ma Y G. Emission time sequence of neutrons

and protons as probes of α -clustering structure[J]. Chinese Physics C, 2020, 44(9): 094105. DOI: 10.1088/1674-1137/44/9/094105.

- Li Y A, Zhang S, Ma Y G. Signatures of α-clustering in ¹⁶O by using a multiphase transport model[J]. Physical Review C, 2020, **102**(5): 054907. DOI: 10.1103/physrevc. 102.054907.
- Zhang S, Ma Y G, Ma G L, *et al.* Collision system size scan of collective flows in relativistic heavy-ion collisions [J]. Physics Letters B, 2020, **804**: 135366. DOI: 10.1016/j. physletb.2020.135366.
- 47 Dey B, Wang S S, Pandit D, *et al.* Exotic nuclear shape due to cluster formation at high angular momentum[J]. Physical Review C, 2020, **102**(3): 031301. DOI: 10.1103/physrevc.102.031301.
- Ma L, Ma Y G, Zhang S. Anisotropy fluctuation and correlation in central α-clustered ¹²C+¹⁹⁷Au collisions[J]. Physical Review C, 2020, **102**: 014910. DOI: 10.1103/ physrevc.102.014910.
- Huang B S, Ma Y G. Two-proton momentum correlation from photodisintegration of α -clustering light nuclei in the quasideuteron region[J]. Physical Review C, 2020, 101 (3): 034615. DOI: 10.1103/physrevc.101.034615.
- 50 He J J, He W B, Ma Y G, *et al.* Machine-learning-based identification for initial clustering structure in relativistic heavy-ion collisions[J]. Physical Review C, 2021, **104**(4): 044902. DOI: 10.1103/physrevc.104.044902.
- 51 Huang B S, Ma Y G. Dipole excitation of ⁶Li and ⁹Be studied with an extended quantum molecular dynamics model[J]. Physical Review C, 2021, **103**(5): 054318. DOI: 10.1103/physrevc.103.054318.
- 52 Shi C Z, Ma Y G. α-clustering effect on flows of direct photons in heavy-ion collisions[J]. Nuclear Science and Techniques, 2021, **32**(6): 66. DOI: 10.1007/s41365-021-00897-9.
- 53 Dasgupta P, Ma G L, Chatterjee R, *et al.* Thermal photons as a sensitive probe of α-cluster in C+Au collisions at the BNL Relativistic Heavy Ion Collider[J]. The European Physical Journal A, 2021, 57(4): 134. DOI: 10.1140/epja/ s10050-021-00441-8.
- 54 Shen L, Huang B S, Ma Y G. Short-range correlations in the extended quantum molecular dynamics model[J]. Physical Review C, 2022, 105: 014603. DOI: 10.1103/ physrevc.105.014603.
- 55 Li Y A, Wang D F, Zhang S, *et al.* System scan of the multiplicity correlation between forward and backward

rapidities in relativistic heavy-ion collisions using a multiphase transport model[J]. Chinese Physics C, 2022, **46**(4): 044101. DOI: 10.1088/1674-1137/ac3bc9.

- 56 Wu H L, Tian W D, Ma Y G, *et al.* Dynamical dipole γ radiation in heavy-ion collisions on the basis of a quantum molecular dynamics model[J]. Physical Review C, 2010, 81(4): 047602. DOI: 10.1103/physrevc. 81. 047602.
- 57 Tao C, Ma Y G, Zhang G Q, et al. Pygmy and giant dipole resonances by Coulomb excitation using a quantum molecular dynamics model[J]. Physical Review C, 2013, 87: 014621. DOI: 10.1103/physrevc.87.014621.
- 58 Ye S Q, Cai X Z, Ma Y G, et al. Symmetry-energy dependence of the dynamical dipole mode in the Boltzmann-Uehling-Uhlenbeck model[J]. Physical Review C, 2013, 88(4): 047602. DOI: 10.1103/physrevc. 88.047602.
- 59 Kong H Y, Xu J, Chen L W, et al. Constraining simultaneously nuclear symmetry energy and neutronproton effective mass splitting with nucleus giant resonances using a dynamical approach[J]. Physical Review C, 2017, 95(3): 034324. DOI: 10.1103/physrevc. 95.034324.
- 60 Kong H Y, Xu J, Chen L W, et al. Constraining simultaneously nuclear symmetry energy and neutronproton effective mass splitting with nucleus giant resonances using a dynamical approach[J]. Physical Review C, 2017, 95(3): 034324. DOI: 10.1103/physrevc. 95.034324.
- 61 Wang K, Ma Y G, Zhang G Q, *et al.* Giant dipole resonance in proton capture reactions using an extended quantum molecular dynamics model[J]. Physical Review C, 2017, 95: 014608. DOI: 10.1103/physrevc.95.014608.
- 62 Wang S S, Ma Y G, Cao X G, *et al.* Investigation of giant dipole resonances in heavy deformed nuclei with an extended quantum molecular dynamics model[J]. Physical Review C, 2017, **95**(5): 054615. DOI: 10.1103/ physrevc.95.054615.
- 63 Cao Y T, Deng X G, Ma Y G. Impact of magnetic field on the giant dipole resonance of Ca-40 using an extended quantum molecular dynamics model[J]. Physical Review C, 2022, 106: 014611. DOI: 10.1103/physrevc. 106. 014611.
- Bacca S, Barnea N, Hagen G, *et al.* First principles description of the giant dipole resonance in ¹⁶O[J].
 Physical Review Letters, 2013, 111: 122502. DOI:

10.1103/PhysRevLett.111.122502.

- Wang H W, Fan G T, Liu L X, *et al.* Commissioning of laser electron gamma beamline SLEGS at SSRF[J]. Nuclear Science and Techniques, 2022, 33(7): 87. DOI: 10.1007/s41365-022-01076-0.
- 66 Chen K J, Liu L X, Hao Z R, *et al.* Simulation and test of the SLEGS TOF spectrometer at SSRF[J]. Nuclear Science and Techniques, 2023, 34(3): 47. DOI: 10.1007/ s41365-023-01194-3.
- 67 Wang T T, Ma Y G, Zhang S. Simulations of momentum correlation functions of light (anti)nuclei in relativistic heavy-ion collisions at $\sqrt{s_{NN}}$ =39 GeV[J]. Physical Review C, 2023, **107**: 014911. DOI: 10.1103/physrevc. 107. 014911.
- 68 Lin Z W, Ko C M, Li B A, *et al.* Multiphase transport model for relativistic heavy ion collisions[J]. Physical Review C, 2005, 72(6): 064901. DOI: 10.1103/physrevc. 72.064901.
- 69 Lin Z W, Zheng L. Further developments of a multi-phase transport model for relativistic nuclear collisions[J]. Nuclear Science and Techniques, 2021, **32**(10): 113. DOI: 10.1007/s41365-021-00944-5.
- 70 马余刚.集体流-从核子自由度到夸克自由度[J].复旦大 学学报, 2023, 62(3): 273-293.
 MA Yugang. The collective flow from the degree of freedom of nucleons to quarks[J]. Journal of Fudan University (Natural Science), 2023, 62(3): 273-293.
- 71 Wang Y Z, Zhang S, Ma Y G. System dependence of away-side broadening and α -clustering light nuclei structure effect in di-hadron azimuthal correlations[J]. Physics Letters B, 2022, 831: 137198. DOI: 10.1016/j. physletb.2022.137198.
- 72 Song Y D, Wang R, Ma Y G, *et al.* Determining the temperature in heavy-ion collisions with multiplicity distribution[J]. Physics Letters B, 2021, **814**: 136084. DOI: 10.1016/j.physletb.2021.136084.
- Wang R, Ma Y G, Wada R, *et al.* Nuclear liquid-gas phase transition with machine learning[J]. Physical Review Research, 2020, 2(4): 043202. DOI: 10.1103/physrevresearch.2.043202.
- He W B, He J J, Wang R, *et al.* Machine learning applications in nuclear physics[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2022, 52: 252004. DOI: 10.1360/SSPMA-2021-0309.
- 75 Ming X C, Zhang H F, Xu R R, *et al.* Nuclear mass based on the multi-task learning neural network method[J].

Nuclear Science and Techniques, 2022, **33**(4): 48. DOI: 10.1007/s41365-022-01031-z.

- Gao Z P, Wang Y J, Lü H L, *et al.* Machine learning the nuclear mass[J]. Nuclear Science and Techniques, 2021, 32(10): 109. DOI: 10.1007/s41365-021-00956-1.
- Boehnlein A, Diefenthaler M, Sato N, *et al. Colloquium*: machine learning in nuclear physics[J]. Reviews of Modern Physics, 2022, **94**(3): 031003. DOI: 10.1103/ revmodphys.94.031003.
- 78 He W B, Li Q F, Ma Y G, *et al.* Machine learning in nuclear physics at low and intermediate energies[EB/OL]. 2023: arXiv:2301.06396. https://arxiv.org/abs/2301.06396.
- 79 He W B, Ma Y G, Pang L G, *et al.* High energy nuclear physics meets Machine Learning[EB/OL]. 2023: arXiv: 2303.06752. https://arxiv.org/abs/2303.06752.
- 80 Bai S W, Yang X F, Wang S J, et al. Commissioning of a high-resolution collinear laser spectroscopy apparatus with a laser ablation ion source[J]. Nuclear Science and Techniques, 2022, 33(1): 9. DOI: 10.1007/s41365-022-00992-5.
- 81 Li P, Bai J H, Niu Z M, *et al.* β-decay half-lives studied using neural network method[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2022, **52**(5): 252006. DOI: 10.1360/sspma-2021-0299.
- 82 Yi J Y, Qiao C Y, Pei J C, *et al.* Bayesian machine learning for the uncertainty evaluation of nuclear fission product yields[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2022, **52**: 252013. DOI: 10.1360/SSPMA-2021-0340.
- 83 Li L, Zhang Y X, Cui Y, *et al.* Determination of the impact parameter distribution of low-intermediate energy heavy ion collisions using machine learning[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2022, 52(5): 252014. DOI: 10.1360/sspma-2021-0303.
- Wei H L, Zhu X, Yuan C. Configurational information entropy analysis of fragment mass cross distributions to determine the neutron skin thickness of projectile nuclei [J]. Nuclear Science and Techniques, 2022, 33(9): 111. DOI: 10.1007/s41365-022-01096-w.
- 85 Wang B C, Qiu M T, Chen W, *et al.* Machine learningbased analyses for total ionizing dose effects in bipolar

junction transistors[J]. Nuclear Science and Techniques, 2022, **33**(10): 131. DOI: 10.1007/s41365-022-01107-w.

- 86 Li Z Y, Qian Z, He J H, *et al.* Improvement of machine learning-based vertex reconstruction for large liquid scintillator detectors with multiple types of PMTs[J]. Nuclear Science and Techniques, 2022, **33**(7): 93. DOI: 10.1007/s41365-022-01078-y.
- Yu Y B, Liu G F, Xu W, *et al.* Research on tune feedback of the Hefei Light Source II based on machine learning [J]. Nuclear Science and Techniques, 2022, 33(3): 28. DOI: 10.1007/s41365-022-01018-w.
- 88 Liu J H, Lim K H, Wood K L, *et al.* Hybrid quantumclassical convolutional neural networks[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2021, **64**(9): 290311. DOI: 10.1007/s11433-021-1734-3.
- 89 Zhao H. Inferring the dynamics of "black-box" systems using a learning machine[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2021, 64(7): 270511. DOI: 10.1007/s11433-021-1699-3.
- 90 Liang J M, Wei S J, Fei S M, et al. Quantum gradient descent algorithms for nonequilibrium steady states and linear algebraic systems[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2022, 65(5): 250313. DOI: 10.1007/s11433-021-1844-7.
- 91 Li W K, Deng D L. Recent advances for quantum classifiers[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2022, 65(2): 220301. DOI: 10.1007/s11433-021-1793-6.
- Ren H B, Wang L, Dai X. Machine learning kinetic energy functional for a one-dimensional periodic system [J]. Chinese Physics Letters, 2021, 38(5): 050701. DOI: 10.1088/0256-307x/38/5/050701.
- 93 Zhang Z Y, Ma R, Hu J F, *et al.* Approach the Gell-Mann-Okubo formula with machine learning[J]. Chinese Physics Letters, 2022, **39**(11): 111201. DOI: 10.1088/0256-307x/39/11/111201.
- 94 Jiang W J, Lu Z D, Deng D L. Quantum continual learning overcoming catastrophic forgetting[J]. Chinese Physics Letters, 2022, **39**(5): 050303. DOI: 10.1088/0256-307x/39/5/050303.